

ISSN: 3049-138X Vol.2(2) Feb, 134-137

**Popular Article** 

# From Fish Farms to Global Threat: The Fight Against Antibiotic Resistance in Aquaculture

# Qurratulain Qureshi<sup>1\*</sup>, Tejpal Dahiya<sup>1</sup>, Asif majeed mir<sup>2</sup>

<sup>1</sup>Department of Aquatic Animal Health, college of fishery science, Chaudhary Charan Singh Haryana Agricultural University, Hisar-125004 (Haryana), India

<sup>2</sup>Department of Veterinary Pharmacology and Toxicology, Nanaji Deshmukh Veterinary Science University, Jabalpur- 482004 (Madhya Pradesh), India DOI:10.5281/FishWorld.14860393

#### Abstract

Aquaculture is one of the fastest-growing sectors in global food production, driven by the rising demand for fish and seafood. However, this rapid expansion has led to growing concerns about the contamination of fish with enteric pathogens and the associated public health risks. The excessive use of antibiotics in aquaculture for disease control has significantly contributed to the emergence of antimicrobial resistance (AMR). Antibiotic-resistant bacteria, originating from aquaculture-related pathogens, can transfer resistance genes to human pathogens, exacerbating the challenge of treating bacterial infections. This article reviews the transfer mechanisms of antibiotic resistance from aquaculture bacteria to human pathogens, the risks associated with such transmission, and the environmental implications. The article further explores case studies from different countries, with a particular focus on India, where high levels of resistance have been reported in aquaculture-related bacteria. Additionally, the environmental impact of AMR, especially in water sources contaminated by pharmaceutical waste and hospital effluents, is examined. The findings underscore the need for a multisectoral and coordinated approach to mitigate the spread of AMR, including stricter regulations on antibiotic usage, improved waste management in aquaculture, and enhanced monitoring of water ecosystems. This comprehensive approach is vital to safeguard both human and marine health from the increasing threat of antimicrobial resistance.

Keywords: Aquaculture, Antimicrobial Resistance, Disease, Antibiotics, Human Health

# 1. Introduction

Aquaculture is one of the fastest-growing sectors in global food production, driven by the increasing demand for fish and seafood. However, this rapid expansion has raised significant concerns regarding the contamination of fish with enteric pathogens, including harmful bacteria and viruses, which can pose serious public health risks. The widespread use of antibiotics in aquaculture, primarily for disease control, has contributed to the growing issue of antimicrobial resistance (AMR). Antibiotics, while effective at treating infections, are often used excessively in fish farming, leading to environmental contamination through the excretion of unmetabolized drugs into aquatic ecosystems. This has facilitated the development of antibiotic-resistant

bacteria, which not only threatens marine life but also poses a substantial risk to human health. Antibiotic resistance in bacteria from aquaculture has been linked to the transfer of resistance genes to human pathogens, further complicating the fight against bacterial infections. The spread of resistance genes, especially through water bodies, is a growing concern, as it can lead to the emergence of resistant pathogens that are difficult to treat with conventional antibiotics. This article explores the transfer of antibiotic resistance from aquaculture-related bacteria to human pathogens, the associated risks, and the environmental impact of this growing issue.

# 1.1 TRANSFER OF ANTIBIOTIC RESISTANCE FROM BACTERIA TO HUMAN

Antibiotic resistance in aquaculture poses a serious risk of transferring resistance to human pathogens. Quinolones, which target both Gram-positive and Gram-negative bacteria, can develop resistance when resistant genes, such as those in plasmids (e.g., qnrA, qnrB), are taken up by bacteria from the environment or other resistant strains. Tetracyclines, commonly used in both human and veterinary treatments, can transfer resistance from fish pathogens like *Vibrio anguillarum* to human bacteria, such as *E. coli*, through conjugation. Additionally, resistance to other antibiotics like β-lactams, macrolides, fosfomycin, and chloramphenicol has been observed in aquaculture-related bacteria from genera such as *Aeromonas*, *Yersinia*, and *Vibrio*. These resistance genes, often located on plasmids and integrons, can spread to human pathogens, posing a threat to both marine and human health by facilitating the transfer of resistance determinants in water and sediments.

#### 1.2 RISK ASSOCIATED WITH AMR IN BACTERIA FROM CULTURED FISH

Exposure of commensals such as *Escherichia coli* to antibiotics increases the carriage levels of resistant organisms and if plasmid-mediated, resistance might be transmitted to a more virulent acquired organism (Szmolka & Nagy 2013). The spread of resistance factors from animal to human flora, including interbacterial species transmission, has been documented or it's highly suspected in *E. coli*, *Camphylobacter* spp., *Enterococcus* spp. Low level antibiotics use also may contribute to resistance, by selecting low-level resistance strains. Synthetic antibiotics (e.g. quinolones) can be more refractory to biodegradation.

# 1.3 ANTIBIOTIC RESISTANCE IN DIFFERENT BACTERIA REPORTED IN DIFFERENT COUNTRIES

Antibiotic resistance in aquaculture bacteria has been reported globally, with significant variations across countries. In India, the fourth-largest consumer of antimicrobials for animal use, studies have shown high levels of resistance, such as 77.5% of *A. hydrophila* isolates being resistant to amoxyclav (Alaali, 2020), and complete resistance to amoxyclav among motile aeromonads from ornamental fish culture in Kerala (Hossain & Heo, 2012). Similar findings were observed in *Aeromonas* species from fish in Kolkata, where 100% of isolates showed

resistance, highlighting the role of sewage in the spread of resistance (Karkman et al., 2018). In Vietnam, a 61.6% multi-resistance rate was noted in *E. coli* from raw food samples (Redwan et al., 2023), while *E. coli* from freshwater aquaculture in West Bengal showed 33-87% multi-antibiotic resistance (MAR) (Bharathkumar & Abraham, 2008), and MAR was also identified in *E. coli* strains from retail fish in Spain (Al-Ghanayem et al., 2020). Studies in Europe and Australia have also reported widespread resistance in *Aeromonas* isolates, with 50% resistance to oxytetracycline and significant resistance to ciprofloxacin, trimethoprim, and other antibiotics (Cížek, 2010; Akinbowale, 2006). These findings underscore the global extent of antibiotic resistance in aquaculture and the risks it poses to both animal and human health.

#### 1.4 ANTIMICROBIAL RESISTANCE & THE ENVIRONMENT

Antimicrobial-resistant bacteria and their resistance genes have been increasingly reported from various water sources across India, largely due to the release of pharmaceutical waste and hospital effluents into nearby water bodies without proper treatment. A study by Taneja & Sharma (2015) showed that the rate of E. coli resistant to third-generation cephalosporins was 25%, 70%, and 95% in water samples with varying levels of contamination: domestic water alone, domestic water with hospital effluent, and hospital effluent alone, respectively. Major rivers such as the Ganges and Yamuna, which span vast areas of northern India, receive multiple inlets containing varying concentrations of drug-resistant bacteria. In these rivers, 17.4% of Gram-negative bacteria were found to produce extended-spectrum betalactamases (ESBLs) (Ghorani-Azam et al., 2016), with resistance genes like blaNDM-1 and blaOXA48 detected (Bilik et al., 2021). In southern India, 100% of E. coli isolates from the Cauvery River in Karnataka were resistant to third-generation cephalosporins (Dhawde et al., 2018). Groundwater and surface water used for drinking and recreational purposes have also shown significant resistance rates: 17% in central India (Kaur et al., 2021), 7% in northern India (Kashmir) (Rather et al., 2013), 50% in eastern India (Sikkim) (Poonia et al., 2014), and 100% in Hyderabad, southern India (Lubbert et al., 2017). These studies, which sampled various water sources including rivers, ponds, lakes, springs, and tube wells, highlight the widespread contamination of water bodies with antimicrobial-resistant bacteria, posing a major public health risk.

#### 2. CONCLUSION

The issue of antimicrobial resistance (AMR) in aquaculture is a critical and often overlooked environmental concern, especially in countries like India where antibiotic use in aquaculture is prevalent. The increasing contamination of water sources with antibiotic-resistant bacteria, primarily due to pharmaceutical waste and hospital effluents, poses significant risks to both human health and marine ecosystems. The transfer of resistance genes from aquaculture-

related pathogens to human bacteria can complicate the treatment of infections and lead to the emergence of multi-drug-resistant strains. To mitigate the growing threat of AMR, it is essential to adopt a multisectoral approach that includes stricter regulation of antibiotic use, improved waste management practices in aquaculture, and enhanced monitoring of water sources. Collaborative efforts from various stakeholders, including government bodies, healthcare providers, and the aquaculture industry, are crucial in tackling this global challenge and ensuring the protection of both public health and the environment.

# **REFRENCE**

- Abraham, T. J., Qureshi, Q. A., & Bardhan, A. (2022). Enteric pathogenic and multiple antibiotic-resistant *Escherichia coli* in farmed Indian major carps and their environments in Peri-Urban Kolkata, India. *Journal of Aquatic Food Product Technology*, 31(10), 1092-1108.
- Ahammad, Z. S., Sreekrishnan, T. R., H & C. L., Knapp, C. W., & Graham, D. W. (2014). Increased waterborne bla NDM-1 resistance gene abundances associated with seasonal human pilgrimages to the Upper Ganges River. *Environmental science & technology*, 48(5), 3014-3020.
- Schar, D., Klein, E. Y., Laxminarayan, R., Gilbert, M., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in aquaculture. *Scientific reports*, 10(1), 21878.
- Ahmed, T., Hyder, M. Z., Liaqat, I., Murtaza, R., & Obioh, G. I. (2020). Trend of Antibiotics and Resistance Genes in Water Resources and Wastewater Treatment Plants. *Antibiotics and Antimicrobial Resistance Genes: Environmental Occurrence and Treatment Technologies*, 339-354.
- Akiba, M., Senba, H., Otagiri, H., Prabhasankar, V. P., Taniyasu, S., Yamashita, N., & Guruge, K. S. (2015). Impact of wastewater from different sources on the prevalence of antimicrobial-resistant *Escherichia coli* in sewage treatment plants in South India. *Ecotoxicology and environmental safety*, 115, 203-208.
- Akinbowale, O. L., Peng, H., & Barton, M. D. (2006). Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. *Journal of applied microbiology*, 100(5), 1103-1113.
- Singh, A. K., Das, S., Singh, S., Gajamer, V. R., Pradhan, N., Lepcha, Y. D., & Tiwari, H. K. (2018). Prevalence of antibiotic resistance in commensal Escherichia coli among the children in rural hill communities of Northeast India. *PloS one*, 13(6), e0199179.
- Alaali, Z., & Thani, A. S. B. (2020). Patterns of antimicrobial resistance observed in the Middle East: Environmental and health care retrospectives. *Science of The Total Environment*, 740, 140089.
- Al-Ghanayem, A., Joseph, B. A. B. U., Bin Mahdi, M., Scaria, B. I. B. I. N., & Saadabi, A. M. (2020). Multidrug Resistance Pattern of Bacteria Isolated from Fish Samples Sold in Retail Market. *J. Clin. Diagn. Res*, *14*, 13-16.
- Azam, M., Jan, A. T., & Haq, Q. M. (2016). Bla CTX-M-152, a novel variant of CTX-M- group-25, identified in a study performed on the prevalence of multidrug resistance among natural inhabitants of river Yamuna, India. *Frontiers in microbiology*, 7, 176.
- Bharathkumar, G., & Abraham, T. J. (2013). Prevalence of transferable oxytetracycline resistance factors in Aeromonas hydrophila in fish hatcheries.
- Bilik, Ö. A., Bayraktar, M., Özcan, N., Gül, K., & Akpolat, N. (2021). Dissemination of blaOXA-48 like, blaNDM, blaKPC, blaIMP-1, blaVIM genes among carbapenem-resistant Escherichia coli and Klebsiella pneumoniae strains in Southeastern Turkey: first report of Klebsiella pneumoniae co-producing blaOXA-48-like, blaVIM and blaIMP-1 genes. *Reviews and Research in Medical Microbiology*, 32(4), 205-210.

- Burridge, L., Weis, J. S., Cabello, F., Pizarro, J., & Bostick, K. (2010). Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. *Aquaculture*, 306(1-4), 7-23.
- Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. *Environmental microbiology*, 8(7), 1137-1144.
- Čížek, A., Dolejská, M., Sochorová, R., Strachotová, K., Piačková, V., & Veselý, T. (2010). Antimicrobial resistance and its genetic determinants in aeromonads isolated in ornamental (koi) carp (Cyprinus carpio koi) and common carp (Cyprinus carpio). *Veterinary microbiology*, *142*(3-4), 435-439.
- Defoirdt, T., Sorgeloos, P., & Bossier, P. (2011). Alternatives to antibiotics for the control of bacterial disease in aquaculture. *Current opinion in microbiology*, *14*(3), 251-258.
- Dhawde, R., Macaden, R., Saranath, D., Nilgiriwala, K., Ghadge, A., & Birdi, T. (2018). Antibiotic resistance characterization of environmental E. coli isolated from River Mula-Mutha, Pune District, India. *International journal of environmental research and public health*, *15*(6), 1247.
- Dinesh, R., Anand, C., John, K. R., George, M. R., Bharathi, S., & Kumar, J. S. S. (2023). An overview of chemicals and drugs in aquaculture disease management. *Indian Journal of Animal Health*, 62(1), 01-20.
- Dutta, C., & Sengupta, C. (2016). Prevalence of *Escherichia coli* in Fish & Shrimps obtained from retail Fish markets in & around Kolkata, India. *Frontiers in Environmental Microbiology*, 2(1), 1-5.
- Ghorani-Azam, A., Riahi-Zanjani, B., & Balali-Mood, M. (2016). Effects of air pollution on human health and practical measures for prevention in Iran. *Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences*, 21.
- Hossain, S., & Heo, G. J. (2021). Ornamental fish: a potential source of pathogenic and multidrug-resistant motile Aeromonas spp. *Letters in Applied Microbiology*, 72(1), 2-12.
- International Commission on Microbiological Specifications for Foods (ICMSF) (1986). Jang, J., Hur, H. G., Sadowsky, M. J., Byappanahalli, M. N., Yan, T., & Ishii, S. (2017). Environmental Escherichia coli: ecology & public health implications—a review. *Journal of applied microbiology*, 123(3), 570-581.