

Warming Waters: The Hidden Cost of Greenhouse Gases on Global Fisheries

Hariom Bohare¹, Dr. K.H Vadhar², Dr. Sona Dubey³, Mayur Bhadarka⁴, Soumya Rai^{5*}

¹ICAR-PhD Research Scholar, Department of Aquaculture, College of Fisheries Science, Kamdhenu University, Veraval 362265 (G.J) India.

²Associate Professor, Department of Aquaculture, College of Fisheries Science, Kamdhenu University, Veraval 362265 (G.J) India.

³Assistant Professor, College of Fishery Science, Nanaji Deshmukh Veterinary Science University, Jabalpur 482004 (M.P) India.

⁴PG Scholar, Department of Aquatic Environment Management, College of Fisheries Science, Kamdhenu University, Veraval 362265 (G.J) India.

⁵Undergraduate, College of Fishery Science, Nanaji Deshmukh Veterinary Science University, Jabalpur 482004 (M.P) India.

DOI:10.5281/FishWorld.16525972

Abstract

The escalating accumulation of greenhouse gases (GHGs) such as carbon dioxide, methane, and nitrous oxide is driving unprecedented global warming with profound implications for the world's oceans. Acting as Earth's primary heat sink, the oceans absorb over 90% of the excess heat generated by anthropogenic emissions, buffering the planet from even more severe atmospheric warming. However, this vital climate regulation function comes at an ecological cost: warming ocean waters are reshaping marine ecosystems, disrupting species distributions, degrading habitats, and undermining the stability of global fisheries. Small-scale fishers, coastal communities, and small island developing states, whose food security and economies are intricately tied to marine resources, face escalating risks as fish stocks migrate, coral reefs bleach, and oxygen levels decline. Compounding stressors such as ocean acidification and increasingly frequent extreme weather events further intensify these threats, creating complex challenges for sustainable fisheries management. This article explores the interlinked pathways through which greenhouse gas emissions and ocean warming impact fisheries, highlights case studies that illustrate these dynamics, and emphasizes the urgent need for integrated mitigation and adaptation strategies. Strengthened policy frameworks, robust international cooperation, and the empowerment of local communities are critical to safeguarding marine biodiversity, sustaining fisheries productivity, and securing the livelihoods of millions in an era of accelerating climate change.

Keywords: Greenhouse gases, global warming, ocean warming, fisheries, climate change.

Introduction

The unprecedented rise in the concentration of greenhouse gases (GHGs), including carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O), is widely recognized as the primary driver of global warming and contemporary climate change. These gases intensify the natural greenhouse effect by trapping heat within Earth's atmosphere, thereby causing a significant and sustained increase in global temperatures across terrestrial and marine environments. The world's oceans, which cover over 70% of the Earth's surface, play a

fundamental role in moderating the impacts of this warming by acting as massive heat sinks. It is estimated that the oceans have absorbed approximately 90% of the excess heat produced by anthropogenic GHG emissions over recent decades (Hoegh-Guldberg et al., 2019). However, this extraordinary capacity to buffer atmospheric warming comes with profound ecological consequences. As ocean waters continue to warm, marine ecosystems are experiencing unprecedented disruptions. Elevated sea surface temperatures alter ocean circulation patterns, reduce oxygen availability, and increase the frequency and severity of marine heatwaves. These changes, in turn, directly affect the distribution, abundance, and reproductive cycles of marine species, leading to shifts in biodiversity and ecosystem functioning (Doney et al., 2012). For the global fisheries sector, which is an essential source of food security, nutrition, and economic stability for millions particularly in vulnerable coastal and small island developing states these climatic shifts pose escalating risks. Rising ocean temperatures can alter fish migration routes, reduce the productivity of key species, and increase the susceptibility of marine life to disease and invasive species (Sumaila et al., 2011). Comprehensive knowledge of these interconnections is necessary to develop and implement robust mitigation and adaptation strategies that can help secure the future of global fisheries in the face of accelerating climate change (Pörtner et al., 2019).

Greenhouse Gases and the Warming Ocean

Greenhouse gases (GHGs) such as carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) play a critical role in driving Earth's current warming trend by enhancing the natural greenhouse effect. These gases accumulate in the atmosphere primarily due to human activities such as fossil fuel combustion, deforestation, and industrial processes, which increase the concentration of heat-trapping molecules. This atmospheric warming has direct consequences for the world's oceans. Oceans absorb over 90% of the excess heat generated by this greenhouse effect, acting as a critical heat sink that moderates atmospheric warming and delays even more severe climate impacts on land (Hoegh-Guldberg et al., 2019). Additionally, oceans function as a major carbon sink, absorbing about a quarter of annual anthropogenic CO₂ emissions through physical and biological processes such as solubility and photosynthesis by marine phytoplankton (Sabine et al., 2004). However, this buffering capacity has limits; as oceans warm, their ability to absorb additional heat and CO₂ diminishes, leading to feedback loops that exacerbate warming (Bindoff et al., 2019). Recent reports by the Intergovernmental Panel on Climate Change (IPCC) indicate that the global ocean has warmed continuously since 1970, with the rate of ocean warming more than doubling since 1993 (IPCC, 2023). Sea surface

temperatures have reached record highs in many regions, contributing to marine heatwaves, coral bleaching events, and significant shifts in marine species distributions (Cheng et al., 2019). Together, these findings underscore the critical but increasingly strained role of oceans in regulating Earth's climate and highlight the urgent need to reduce GHG emissions to protect marine ecosystems and the communities that depend on them.

Effects of Warming Waters on Marine Ecosystems

The continuous warming of the world's oceans has far-reaching consequences for marine ecosystems. Rising ocean temperatures affect species physiology, behavior, habitat suitability, and ecosystem functioning in complex and often unpredictable ways. Recent scientific evidence highlights four major pathways through which warming waters disrupt marine life and the communities that depend on it. One of the most immediate biological responses to ocean warming is the large-scale redistribution of fish stocks. As surface and subsurface waters warm, many marine species are forced to migrate toward cooler, deeper waters or shift poleward to maintain their preferred thermal habitats (Poloczanska et al., 2016). This migration alters the composition of local fish communities, disrupts traditional fishing grounds, and creates conflicts over shifting stocks among nations and coastal communities (Pinsky et al., 2018). For example, North Atlantic cod (Gadus morhua) and mackerel have moved progressively northward, challenging established fisheries management and economic stability in affected regions (Free et al., 2019). Such shifts threaten food security and livelihoods, especially in regions heavily dependent on specific fish species for subsistence and trade. Coral reefs, which host nearly a quarter of all marine species, are among the most vulnerable ecosystems to ocean warming. Elevated sea surface temperatures induce coral bleaching, a stress response in which corals expel the symbiotic algae (zooxanthellae) that provide them with energy through photosynthesis (Hughes et al., 2018). Without these algae, corals lose their colour and, more critically, their primary energy source, often resulting in large-scale mortality if stressful conditions persist. Mass bleaching events have increased in frequency and severity over recent decades; for instance, the Great Barrier Reef experienced back-to-back bleaching events in 2016, 2017, and 2020, causing widespread habitat degradation and loss of biodiversity (Hughes et al., 2017). The loss of healthy coral reefs deprives numerous fish species of critical breeding and feeding grounds, diminishing fisheries productivity and coastal protection. As ocean temperatures rise, the solubility of oxygen in seawater declines, leading to ocean deoxygenation process further exacerbated by increased stratification that limits vertical mixing and replenishment of oxygen in deeper waters (Breitburg et al., 2018). Lowoxygen conditions stress marine organisms, especially larger and more active species such as tuna, sharks, and cod, which have high metabolic demands (Schmidtko et al., 2017). Deoxygenation alters species survival rates, growth, and reproductive success, and can create or expand hypoxic zones, commonly known as "dead zones," where few organisms can survive. The expansion of hypoxic areas in coastal and open-ocean regions poses significant threats to fisheries and ecosystem health worldwide. The combined pressures of rising temperatures, habitat degradation, and deoxygenation contribute to increasing risks of local extinction for temperature-sensitive and range-restricted marine species (Pecl et al., 2017). Coral-dependent fish, polar species, and organisms with limited dispersal ability are particularly vulnerable. As species are lost or decline in abundance, the balance and resilience of marine food webs are disrupted, leading to cascading ecological consequences and a reduction in overall biodiversity (IPBES, 2019). The loss of biodiversity diminishes ecosystem services such as nutrient cycling, coastal protection, and the provision of food resources, amplifying the socioeconomic impacts of climate change on coastal communities and the global fisheries sector.

Combined Threats: Warming, Acidification, and Extreme Events

Beyond rising temperatures, ocean ecosystems and coastal communities face the compounding threats of ocean acidification and increasingly frequent extreme weather events stressors that together magnify the risks to marine life and fisheries. As atmospheric carbon dioxide (CO₂) levels rise, a significant portion is absorbed by the ocean, where it reacts with seawater to form carbonic acid, lowering ocean pH and reducing carbonate ion availability (IPCC, 2023). This acidification process impairs the ability of calcifying organisms such as corals, oysters, mussels, and certain plankton to build and maintain their calcium carbonate shells and skeletons (Doney et al., 2020). Weakened shellfish populations threaten entire marine food webs and undermine the livelihoods of coastal communities reliant on shellfish aquaculture and reef-based fisheries. Simultaneously, the warming climate is intensifying the frequency and severity of extreme weather events including storms, cyclones, and coastal flooding that can devastate coastal infrastructure, damage fishing vessels and gear, disrupt supply chains, and destroy aquaculture facilities (Bender et al., 2010).

Mitigation and Adaptation Strategies

Addressing the threats posed by ocean warming and its cascading impacts on global fisheries requires an integrated approach that combines robust mitigation with proactive adaptation. Mitigation remains the most fundamental long-term solution, focused on

significantly reducing greenhouse gas (GHG) emissions to limit further warming and ocean acidification. International climate agreements, such as the Paris Agreement, aim to keep global temperature rise well below 2°C above pre-industrial levels, with efforts to limit the increase to 1.5°C a target critical for protecting marine ecosystems from irreversible damage (United Nations Framework Convention on Climate Change [UNFCCC], 2015). However, even with ambitious emission cuts, fisheries must adapt to unavoidable changes already underway. Adaptation strategies include implementing improved monitoring of fish stocks to track shifting distributions, adopting flexible and dynamic fishing quotas that reflect changing species ranges, and investing in the restoration and protection of critical habitats like coral reefs, seagrasses, and mangroves that support biodiversity and coastal resilience (Pörtner et al., 2019). Strengthening community resilience is equally vital. This can be achieved through community-based resource management, diversification of livelihoods to reduce dependence on a single fishery, and policies that provide social safety nets and capacity-building for vulnerable coastal and island communities (Allison & Bassett, 2015). Together, these mitigation and adaptation measures are essential to safeguard marine ecosystems, sustain fisheries, and support the millions of people worldwide who depend on healthy oceans for food security and economic well-being.

The Role of Policy and Global Cooperation

Effective policy frameworks and robust international cooperation are essential to address the transboundary nature of climate change impacts on marine ecosystems and fisheries. Many commercially valuable fish species are migratory, shifting their ranges across national boundaries as ocean temperatures change, which creates challenges for management and can lead to conflicts between nations over shifting stocks (Pinsky et al., 2018). To manage these dynamic resources sustainably, international agreements and regional fisheries management organizations must coordinate to ensure that fishing quotas, stock assessments, and enforcement adapt to changing ecological realities. Sustainable fisheries management should also prioritize ecosystem-based approaches that consider entire marine food webs and the cumulative effects of human activities, rather than focusing solely on single species (Link & Browman, 2014). Expanding Marine Protected Areas (MPAs) is another key tool for conserving biodiversity and enhancing the resilience of fish stocks by protecting critical habitats from overfishing and other stressors (Lubchenco & Grorud-Colvert, 2015). Finally, stronger integration of climate science into fisheries governance is urgently needed to inform adaptive management, forecast species redistributions, and support evidence-based decision-

making. By strengthening global cooperation and embedding climate considerations into fisheries policies, governments and stakeholders can better safeguard marine resources and the communities that depend on them.

Conclusion

In an era of accelerating climate change, the hidden impacts of greenhouse gas emissions on the world's oceans pose one of the greatest challenges to global fisheries, food security, and ocean health. Rising ocean temperatures, acidifying waters, and intensifying extreme weather events are not distant threatsthey are unfolding now, reshaping marine ecosystems and undermining the livelihoods and nutrition of millions of people, especially in vulnerable coastal and island communities. These changes are largely invisible beneath the ocean's surface yet profoundly alter the balance of life beneath the waves. The evidence is clear: if left unchecked, the cascading effects of global warming will weaken the resilience of fisheries, diminish biodiversity, and jeopardize the sustainable harvests that countless communities depend on. To safeguard the future of our oceans, urgent and collaborative action is needed. Policymakers must commit to ambitious emission reductions and integrate climate science into fisheries governance. Scientists must continue to advance knowledge and provide clear, actionable data. Together, these efforts can help turn the tide, ensuring that healthy oceans and thriving fisheries remain a cornerstone of global food security and economic well-being for generations to come.

References

- Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S., Camilloni, I., ... & Zhou, G. (2019). *Impacts of 1.5°C of global warming on natural and human systems*. In V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D.
- Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., ... & Tabatabaei, M. (2018). Global Warming of 1.5 C. An IPCC Special Report on the Impacts of Global Warming of 1.5 C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. Sustainable Development, and Efforts to Eradicate Poverty, 32.
- Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., ... & Talley, L. D. (2012). Climate change impacts on marine ecosystems. *Annual review of marine science*, 4(2012), 11-37.
- Pörtner, H. O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., & Weyer, N. M. (2019). The ocean and cryosphere in a changing climate. *IPCC special report on the ocean and cryosphere in a changing climate*, 1155, 10-1017.
- Sumaila, U. R., Cheung, W. W., Lam, V. W., Pauly, D., & Herrick, S. (2011). Climate change impacts on the biophysics and economics of world fisheries. *Nature climate change*, 1(9), 449-456.
- Bindoff, N. L., Cheung, W. W., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., ... & Williamson, P. (2022). Changing ocean, marine ecosystems, and dependent

communities.

- Cheng, L., Abraham, J., Hausfather, Z., & Trenberth, K. E. (2019). How fast are the oceans warming? *Science*, 363(6423), 128-129.
- Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., ... & Rios, A. F. (2004). The oceanic sink for anthropogenic CO2. *science*, 305(5682), 367-371.
- Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., ... & Zhang, J. (2018). Declining oxygen in the global ocean and coastal waters. *Science*, 359(6371), eaam7240.
- Free, C. M., Thorson, J. T., Pinsky, M. L., Oken, K. L., Wiedenmann, J., & Jensen, O. P. (2019). Impacts of historical warming on marine fisheries production. *Science*, 363(6430), 979-983.
- Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. H., ... & Wilson, S. K. (2017). Global warming and recurrent mass bleaching of corals. *Nature*, *543*(7645), 373-377.
- Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B., ... & Scheffer, M. (2017). Coral reefs in the Anthropocene. *Nature*, *546*(7656), 82-90.
- Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I. C., ... & Williams, S. E. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. *Science*, 355(6332), eaai9214.
- Pinsky, M. L., Reygondeau, G., Caddell, R., Palacios-Abrantes, J., Spijkers, J., & Cheung, W. W. (2018). Preparing ocean governance for species on the move. *Science*, *360*(6394), 1189-1191.
- Poloczanska, E. S., Burrows, M. T., Brown, C. J., García Molinos, J., Halpern, B. S., Hoegh-Guldberg, O., ... & Sydeman, W. J. (2016). Responses of marine organisms to climate change across oceans. *Frontiers in Marine Science*, *3*, 62.
- Schmidtko, S., Stramma, L., &Visbeck, M. (2017). Decline in global oceanic oxygen content during the past five decades. *Nature*, *542*(7641), 335-339.
- Bender, M. A., Knutson, T. R., Tuleya, R. E., Sirutis, J. J., Vecchi, G. A., Garner, S. T., & Held, I. M. (2010). Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. *Science*, 327(5964), 454-458.
- Christiansen, J. S., Mecklenburg, C. W., & Karamushko, O. V. (2014). Arctic marine fishes and their fisheries in light of global change. *Global change biology*, 20(2), 352-359.
- Pershing, A. J., Alexander, M. A., Hernandez, C. M., Kerr, L. A., Le Bris, A., Mills, K. E., ... & Thomas, A. C. (2015). Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. *Science*, 350(6262), 809-812.
- Allison, E. H., & Bassett, H. R. (2015). Climate change in the oceans: human impacts and responses. *Science*, *350*(6262), 778-782.
- Pörtner, H. O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., & Weyer, N. M. (2019). The ocean and cryosphere in a changing climate. *IPCC special report on the ocean and cryosphere in a changing climate*, 1155, 10-1017.
- Link, J. S., & Browman, H. I. (2014). Integrating what? Levels of marine ecosystem-based assessment and management. *ICES Journal of Marine Science*, 71(5), 1170-1173.
- Lubchenco, J., & Grorud-Colvert, K. (2015). Making waves: The science and politics of ocean protection. *Science*, *350*(6259), 382-383.

Official Website