

Climate Change Adaptation in Fisheries Management

Surendra Kumar Maurya¹, Ambrish Singh²

¹ICAR-Central Inland Fisheries Research Institute, Regional Center Prayagraj, Uttar Praesh, India

²Assistant Professor, Dept. of Fisheries Resource Management, College of Fisheries Science, DUVASU, Mathura, Uttar Pradesh DOI:10.5281/FishWorld.15690457

Introduction

Climate change is profoundly impacting the fisheries sector, which is vital for food security and livelihoods. Rising sea temperatures, shifting ocean currents, altered nutrient cycles, and increased extreme weather events are driving changes in fish populations and habitats. Coastal fisheries face additional threats from rising sea levels, while ocean acidification reduces the availability of calcium carbonate, affecting shell-forming marine organisms and disrupting food webs. Fisheries operate within interconnected social and environmental systems influenced by economic, technological, and governance factors. These dynamic interactions make it challenging to predict and manage climate-driven changes in fish stocks. Traditional fisheries management approaches, such as catch limits and gear regulations, remain important but are insufficient in addressing the unpredictability caused by climate change. Adaptive strategies, including ecosystem-based management, flexible policies, and real-time monitoring, are essential to sustain fish populations and marine biodiversity. Many fish species are migrating toward cooler waters, causing shifts in species distributions that impact local fisheries. Freshwater species, such as salmon and trout, are particularly vulnerable to warming waters and declining oxygen levels. The increasing uncertainty in fisheries management calls for proactive measures like revising fishing quotas, altering seasonal fishing periods, and strengthening international cooperation. Scientific advancements in climate modeling, improved data collection, and stakeholder engagement will be crucial for building resilience in fisheries. Addressing these challenges requires interdisciplinary collaboration and policy reforms to integrate climate science into fisheries governance. The long-term sustainability of fisheries depends on the ability to adapt to climate-induced disruptions,

ensuring stable marine ecosystems and protecting the livelihoods of millions who depend on them.

Changes in Fish Migration Patterns

Many fish species are highly sensitive to environmental cues, such as temperature and seasonal patterns. As climate change shifts these factors, migratory species may change their routes or migration timings, disrupt traditional fishing schedules and make it more difficult for fishermen to predict where and when to fish.

Sea level rise

Rising sea levels can inundate coastal areas, including important estuarine and mangrove ecosystems that provide critical breeding grounds for many fish species. These habitats are essential for juvenile fish, and their destruction can lead to population declines in both freshwater and marine species.

Adaptation strategies in fisheries management

Climate change is significantly impacting marine and coastal ecosystems in the North Atlantic, disrupting fisheries through rising ocean temperatures, acidification, shifting species distributions, and extreme weather events. These climate-driven changes, combined with existing pressures like overfishing and habitat degradation, complicate fisheries management and stock sustainability. Traditional management strategies such as catch limits, seasonal closures, and marine protected areas remain vital but may not be sufficient in addressing increasing environmental variability. Fisheries managers must adopt a resilience-focused approach that integrates ecosystem-based management, adaptive decision-making, and precautionary strategies. Tools like scenario-based planning, real-time monitoring, and dynamic stock assessments can help navigate uncertainties in species abundance, migration, and ecosystem health. Despite advancements in climate modeling, uncertainties persist regarding how fisheries will respond to long-term climate shifts. Decision-makers must consider key questions about species resilience, ecological thresholds, and the reliability of regional climate predictions. A proactive, interdisciplinary approach that combines climate science, fisheries ecology, socio-economic factors, and governance mechanisms is essential for mitigating climate impacts and ensuring the long-term sustainability of marine resources.

Approaches of adaptation strategies

- Being open to learning.
- Ability to handle complexity and uncertainty.
- Focus on the long term.

- Emphasis on ecosystems.
- Integration of various sectors and levels.
- Capacity for monitoring and assessment.
- Strengthened involvement and empowerment of stakeholders.

Managing for ecological resilience

Fisheries management alone will not be able to stop climate change, so effective management will need to focus on adapting to its impacts. These strategies vary but may include protecting watersheds (like conserving forests) to reduce nutrients flowing into lakes, which helps prevent lower oxygen levels (Jacobson et al. 2013). They can also involve setting harvest rules to ensure a mix of fish ages, which helps protect against the loss of fish from extreme events (Hansen et al. 2015). A fisheries system's ability to adapt to climate change depends on its ecological resilience. Managing for resilience means focusing on processes and feedbacks that help the system stay healthy or change in a positive direction (Walker and Salt 2012).

Ecosystem -based management

Ecosystem-based management (EBM) represents a promising approach to foster adaptation to Climate change. Long *et al.* (2015) described Ecosystem-Based Management (EBM) as an approach that integrates ecological, social, and governance principles across suitable temporal and spatial scales. EBM acknowledges the interconnected and evolving nature of social-ecological systems, with a focus on engaging stakeholders and diverse knowledge systems in a flexible, adaptive process. In this process, system boundaries and management strategies are shaped by societal preferences. In our analysis, we examined 15 important EBM principles identified by Long *et al.* The principles were defined and discussed by the authors to ensure consistency in the analysis and were organized into six categories: Sustainability, Ecological, Management, Democracy, Knowledge, and Scale (for further details, see the Supplementary Materials).

Community engagement and livelihood diversification

Livelihood diversification refers to the efforts made by individuals and households to find new ways to increase income and reduce environmental risks. These efforts vary greatly depending on the level of freedom in choosing whether to diversify and the ability to reverse the outcome. It includes both on-farm and off-farm activities aimed at generating income beyond the primary agricultural work, such as producing additional agricultural and non-agricultural goods and services, selling labour, self-employment in small businesses, and other

strategies for risk management. This concept also includes what is referred to as "activity or environment diversification" in agriculture (Carter, 1997) or more drastic strategies like migration (Stark and Levhari, 1982).

Conclusion

Climate change is transforming marine and coastal ecosystems, threatening fish stocks and traditional fishing practices. While conventional fisheries management remains important, it must be complemented with climate-adaptive strategies to enhance ecosystem resilience and long-term sustainability. An integrated approach is essential, incorporating ecosystem-based management, adaptive decision-making, and flexible policies. Tools like dynamic stock assessments, scenario-based planning, and international cooperation will help address uncertainties and climate-driven challenges. Proactive, science-driven management combining traditional knowledge, research, and stakeholder collaboration will be key to protecting marine biodiversity, food security, and livelihoods in a changing climate.